Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Lancet Rheumatol ; 4(10): e725-e737, 2022 Oct.
Article in English | MEDLINE | ID: covidwho-2042294

ABSTRACT

Background: Symptomatic hand osteoarthritis is more common in women than in men, and its incidence increases around the age of menopause, implicating oestrogen deficiency. No randomised controlled trials of hormone replacement therapy (HRT) have been done in people with hand osteoarthritis. We aimed to determine the feasibility and acceptability of a form of HRT (conjugated oestrogens plus bazedoxifene) in post-menopausal women with painful hand osteoarthritis. Methods: The HOPE-e feasibility study was a randomised, double-blind, placebo-controlled trial, for which we recruited women aged 40-65 years, for whom 1-10 years had passed after their final menstrual period, with definite hand osteoarthritis and at least two painful hand joints. Participants were recruited across three primary or secondary care sites and from the community and were randomly assigned (1:1) to receive conjugated oestrogens plus bazedoxifene or placebo, orally once every day for 24 weeks, before weaning for 4 weeks until the end of the study. The primary feasibility outcomes were rates of identification, recruitment, randomisation, retention, and compliance of eligible participants, and the likelihood of unmasking. The secondary objective was to generate proof-of-concept quantitative and qualitative data on the acceptability of proposed clinical outcomes for a full trial and adverse events. We used an intention-to-treat analysis, and criteria for progression to a full trial were pre-defined as recruitment of at least 30 participants across all sites in 18 months; a dropout rate of less than or equal to 30% of randomised individuals; and acceptability to the majority of participants, including acceptable rates of adverse events. Due to the COVID-19 pandemic, the recruitment window was reduced to 12-15 months. A proportionately reduced minimum sample size of 22 was judged to be sufficient to test feasibility. This trial was registered at ISRCTN, ISRCTN12196200. Findings: From May 9, 2019 to Dec 31, 2020, 434 enquiries or referrals were received. We did 96 telephone pre-screens; of the 35 eligible participants, seven were excluded as ineligible at the telephone or face-to-face screening and 28 (80% [95% CI 63-92]) were randomly assigned. Of the 406 who were not randomly assigned, 250 (62%) were ineligible (with contraindicated medications accounting for 50 [20%] of these), 101 (25%) did not respond to further enquiries, and 55 (14%) chose not to proceed (with the most common reason being not wanting to take a hormone-based drug). All 28 randomised participants completed all follow-up assessments with high compliance and outcome measure completeness. All three adverse event-related treatment withdrawals were in the placebo group. No serious adverse events were reported. Participants and investigators were successfully masked (participant Bang's blinding index placebo group 0·50 [95% CI 0·25-0·75]). The trial met the prespecified criteria for progression to a full trial. Interpretation: This first-ever feasibility study of a randomised controlled trial of HRT for post-menopausal women with painful hand osteoarthritis met its progression criteria, although it was not powered to detect a clinical effect. This outcome indicates that a full trial of an HRT in this population is feasible and acceptable and identifies potential refinements with regard to the design of such a trial. Funding: Research for Patient Benefit programme, National Institute for Health Research.

2.
Vaccine ; 40(35): 5248-5262, 2022 08 19.
Article in English | MEDLINE | ID: covidwho-1886120

ABSTRACT

Replication-deficient adenoviral vectors have been under investigation as a platform technology for vaccine development for several years and have recently been successfully deployed as an effective COVID-19 counter measure. A replication-deficient adenoviral vector based on the simian adenovirus type Y25 and named ChAdOx1 has been evaluated in several clinical trials since 2012. The Brighton Collaboration Benefit-Risk Assessment of VAccines by TechnolOgy (BRAVATO) was formed to evaluate the safety and other key features of new platform technology vaccines. This manuscript reviews key features of the ChAdOx1-vectored vaccines. The simian adenovirus Y25 was chosen as a strategy to circumvent pre-existing immunity to common human adenovirus serotypes which could impair immune responses induced by adenoviral vectored vaccines. Deletion of the E1 gene renders the ChAdOx1 vector replication incompetent and further genetic engineering of the E3 and E4 genes allows for increased insertional capability and optimizes vaccine manufacturing processes. ChAdOx1 vectored vaccines can be manufactured in E1 complementing cell lines at scale and are thermostable. The first ChAdOx1 vectored vaccines approved for human use, against SARS-CoV-2, received emergency use authorization in the UK on 30th December 2020, and is now approved in more than 180 countries. Safety data were compiled from phase I-III clinical trials of ChAdOx1 vectored vaccines expressing different antigens (influenza, tuberculosis, malaria, meningococcal B, prostate cancer, MERS-CoV, Chikungunya, Zika and SARS-CoV-2), conducted by the University of Oxford, as well as post marketing surveillance data for the COVID-19 Oxford-AstraZeneca vaccine. Overall, ChAdOx1 vectored vaccines have been well tolerated. Very rarely, thrombosis with thrombocytopenia syndrome (TTS), capillary leak syndrome (CLS), immune thrombocytopenia (ITP), and Guillain-Barre syndrome (GBS) have been reported following mass administration of the COVID-19 Oxford-AstraZeneca vaccine. The benefits of this COVID-19 vaccination have outweighed the risks of serious adverse events in most settings, especially with mitigation of risks when possible. Extensive immunogenicity clinical evaluation of ChAdOx1 vectored vaccines reveal strong, durable humoral and cellular immune responses to date; studies to refine the COVID-19 protection (e.g., via homologous/heterologous booster, fractional dose) are also underway. New prophylactic and therapeutic vaccines based on the ChAdOx1 vector are currently undergoing pre-clinical and clinical assessment, including vaccines against viral hemorrhagic fevers, Nipah virus, HIV, Hepatitis B, amongst others.


Subject(s)
Adenoviruses, Simian , COVID-19 Vaccines , COVID-19 , Zika Virus Infection , Zika Virus , Adenoviruses, Simian/genetics , COVID-19/prevention & control , COVID-19 Vaccines/adverse effects , Humans , Male , Risk Assessment , SARS-CoV-2/genetics
3.
EBioMedicine ; 77: 103902, 2022 Mar.
Article in English | MEDLINE | ID: covidwho-1700817

ABSTRACT

BACKGROUND: There is an ongoing global effort to design, manufacture, and clinically assess vaccines against SARS-CoV-2. Over the course of the ongoing pandemic a number of new SARS-CoV-2 virus isolates or variants of concern (VoC) have been identified containing mutations in key proteins. METHODS: In this study we describe the generation and preclinical assessment of a ChAdOx1-vectored vaccine (AZD2816) which expresses the spike protein of the Beta VoC (B.1.351). FINDINGS: We demonstrate that AZD2816 is immunogenic after a single dose. When AZD2816 is used as a booster dose in animals primed with a vaccine encoding the original spike protein (ChAdOx1 nCoV-19/ [AZD1222]), an increase in binding and neutralising antibodies against Beta (B.1.351), Gamma (P.1) and Delta (B.1.617.2) is observed following each additional dose. In addition, a strong and polyfunctional T cell response was measured all booster regimens. INTERPRETATION: Real world data is demonstrating that one or more doses of licensed SARS-CoV-2 vaccines confer reduced protection against hospitalisation and deaths caused by divergent VoC, including Omicron. Our data support the ongoing clinical development and testing of booster vaccines to increase immunity against highly mutated VoC. FUNDING: This research was funded by AstraZeneca with supporting funds from MRC and BBSRC.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/prevention & control , COVID-19 Vaccines , ChAdOx1 nCoV-19 , Humans , SARS-CoV-2/genetics
4.
ACS Cent Sci ; 7(4): 594-602, 2021 Apr 28.
Article in English | MEDLINE | ID: covidwho-1225486

ABSTRACT

Vaccine development against the SARS-CoV-2 virus focuses on the principal target of the neutralizing immune response, the spike (S) glycoprotein. Adenovirus-vectored vaccines offer an effective platform for the delivery of viral antigen, but it is important for the generation of neutralizing antibodies that they produce appropriately processed and assembled viral antigen that mimics that observed on the SARS-CoV-2 virus. Here, we describe the structure, conformation, and glycosylation of the S protein derived from the adenovirus-vectored ChAdOx1 nCoV-19/AZD1222 vaccine. We demonstrate native-like post-translational processing and assembly, and reveal the expression of S proteins on the surface of cells adopting the trimeric prefusion conformation. The data presented here confirm the use of ChAdOx1 adenovirus vectors as a leading platform technology for SARS-CoV-2 vaccines.

5.
Genome Med ; 13(1): 43, 2021 03 15.
Article in English | MEDLINE | ID: covidwho-1136245

ABSTRACT

BACKGROUND: ChAdOx1 nCoV-19 is a recombinant adenovirus vaccine against SARS-CoV-2 that has passed phase III clinical trials and is now in use across the globe. Although replication-defective in normal cells, 28 kbp of adenovirus genes is delivered to the cell nucleus alongside the SARS-CoV-2 S glycoprotein gene. METHODS: We used direct RNA sequencing to analyse transcript expression from the ChAdOx1 nCoV-19 genome in human MRC-5 and A549 cell lines that are non-permissive for vector replication alongside the replication permissive cell line, HEK293. In addition, we used quantitative proteomics to study over time the proteome and phosphoproteome of A549 and MRC5 cells infected with the ChAdOx1 nCoV-19 vaccine. RESULTS: The expected SARS-CoV-2 S coding transcript dominated in all cell lines. We also detected rare S transcripts with aberrant splice patterns or polyadenylation site usage. Adenovirus vector transcripts were almost absent in MRC-5 cells, but in A549 cells, there was a broader repertoire of adenoviral gene expression at very low levels. Proteomically, in addition to S glycoprotein, we detected multiple adenovirus proteins in A549 cells compared to just one in MRC5 cells. CONCLUSIONS: Overall, the ChAdOx1 nCoV-19 vaccine's transcriptomic and proteomic repertoire in cell culture is as expected. The combined transcriptomic and proteomics approaches provide a detailed insight into the behaviour of this important class of vaccine using state-of-the-art techniques and illustrate the potential of this technique to inform future viral vaccine vector design.


Subject(s)
COVID-19 Vaccines/adverse effects , COVID-19 Vaccines/immunology , COVID-19/immunology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , COVID-19/metabolism , COVID-19/prevention & control , COVID-19/virology , COVID-19 Vaccines/genetics , Cell Line , Cells, Cultured , Gene Expression , Gene Expression Profiling , Gene Expression Regulation , Host-Pathogen Interactions/genetics , Host-Pathogen Interactions/immunology , Humans , Polyadenylation , Proteomics/methods , RNA, Messenger , RNA, Viral , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Transcription, Genetic
7.
Nature ; 586(7830): 578-582, 2020 10.
Article in English | MEDLINE | ID: covidwho-691215

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged in December 20191,2 and is responsible for the coronavirus disease 2019 (COVID-19) pandemic3. Vaccines are an essential countermeasure and are urgently needed to control the pandemic4. Here we show that the adenovirus-vector-based vaccine ChAdOx1 nCoV-19, which encodes the spike protein of SARS-CoV-2, is immunogenic in mice and elicites a robust humoral and cell-mediated response. This response was predominantly mediated by type-1 T helper cells, as demonstrated by the profiling of the IgG subclass and the expression of cytokines. Vaccination with ChAdOx1 nCoV-19 (using either a prime-only or a prime-boost regimen) induced a balanced humoral and cellular immune response of type-1 and type-2 T helper cells in rhesus macaques. We observed a significantly reduced viral load in the bronchoalveolar lavage fluid and lower respiratory tract tissue of vaccinated rhesus macaques that were challenged with SARS-CoV-2 compared with control animals, and no pneumonia was observed in vaccinated SARS-CoV-2-infected animals. However, there was no difference in nasal shedding between vaccinated and control SARS-CoV-2-infected macaques. Notably, we found no evidence of immune-enhanced disease after viral challenge in vaccinated SARS-CoV-2-infected animals. The safety, immunogenicity and efficacy profiles of ChAdOx1 nCoV-19 against symptomatic PCR-positive COVID-19 disease will now be assessed in randomized controlled clinical trials in humans.


Subject(s)
Betacoronavirus/immunology , Coronavirus Infections/immunology , Coronavirus Infections/prevention & control , Disease Models, Animal , Macaca mulatta , Pandemics/prevention & control , Pneumonia, Viral/prevention & control , Viral Vaccines/immunology , Adenoviridae/genetics , Animals , Bronchoalveolar Lavage Fluid , COVID-19 , COVID-19 Vaccines , Coronavirus Infections/genetics , Coronavirus Infections/virology , Cytokines/immunology , Female , Immunity, Cellular , Immunity, Humoral , Immunoglobulin G/immunology , Lung/immunology , Lung/pathology , Lung/virology , Macaca mulatta/immunology , Macaca mulatta/virology , Male , Mice , Pneumonia, Viral/immunology , Pneumonia, Viral/virology , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology , Th1 Cells/immunology , Vaccination , Viral Load , Viral Vaccines/administration & dosage , Viral Vaccines/genetics
SELECTION OF CITATIONS
SEARCH DETAIL